metal-organic compounds

Mo $K\alpha$ radiation

 $0.63 \times 0.33 \times 0.06 \text{ mm}$

26145 measured reflections

6845 independent reflections 5617 reflections with $I > 2\sigma(I)$

 $\mu = 1.17 \text{ mm}^{-1}$

T = 180 (2) K

 $R_{\rm int} = 0.036$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{[(η^5) -cyclopentadienyl]tris(diethyl phosphito- $\kappa^3 P, P', P''$)cobaltate(III)- $\kappa^3 O, O', O''$]oxovanadium(IV)}- μ -oxalate

Craig C. McLauchlan* and Alexander E. Anderson

Department of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790-4160, USA

Correspondence e-mail: mclauchlan@ilstu.edu

Received 9 July 2008; accepted 31 July 2008

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.006 Å; R factor = 0.041; wR factor = 0.110; data-to-parameter ratio = 21.2.

The title compound {systematic name: $bis[1,4(\eta^5)$ -cyclopentadienyl]hexakis(μ -diethyl phosphito)-1: $2\kappa^6P$:O;3: $4\kappa^6O$:P- μ -ox alato-2: $3\kappa^4O^1$, O^2 : O^1 , O^2 '-dioxido- $2\kappa O$, $3\kappa O$ -1,4-dicobalt(III)-2,3-divanadium(IV)}, [Co₂V₂(C₅H₅)₂(C₂O₄)(C₄H₁₀O₃P)₆O₂], is an oxalate-bridged dinuclear complex of oxovanadium(IV). The geometric center of the dimer lies on an inversion center. The unique Co atom is bonded to three P atoms and a cyclopentadienyl ring. The unique V atom has six O atom neighbors in an approximately octahedral arrangement; the V-O bond *trans* to the V=O bond is significantly lengthened.

Related literature

The title compound was synthesized by oxidation of the known { $[Cp(P^{OEt})_{3}Co]VCl_{2}(\mu-C_{2}O_{4})$ dimer (Weberski & McLauchlan, 2007*a*). For related literature on vanadium-oxalate species, see: Salta *et al.* (1996); Triki *et al.* (2000); Li *et al.* (2003); Min *et al.* (2005); Tatiersky *et al.* (2005); Yang *et al.* (2006); Costisor *et al.* (2001). For related literature on the ligand, see: Kläui (1979); Kläui *et al.* (1987); Kamenar *et al.* (1988); Ward *et al.* (1998); Kölle & Englert (2002); Weberski & McLauchlan (2007*b*).

Experimental

Crystal data $[Co_2V_2(C_5H_5)_2(C_2O_4) - (C_4H_{10}O_3P)_6O_2]$

 $M_r = 1292.48$ Monoclinic, C2/c a = 28.364 (5) Å b = 10.9825 (18) Å c = 19.976 (3) Å $\beta = 117.412 (2)^{\circ}$ $V = 5524.0 (16) \text{ Å}^{3}$

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(APEX2; Bruker, 2008)
$T_{\rm min} = 0.682, T_{\rm max} = 0.932$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	323 parameters
$wR(F^2) = 0.109$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
6845 reflections	$\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

V1-O3	1.594 (2)	V1-01	2.0490 (18)
V1-O1P	1.9932 (18)	V1-O2	2.0727 (17)
V1-O3P	2.0145 (18)	V1-O2P	2.2077 (18)
03 - V1 - 01P	97 46 (9)	01 - V1 - 02	80.91 (7)
O3-V1-O3P	99.73 (9)	O3-V1-O2P	177.13 (9)
O1P-V1-O3P	91.75 (7)	O1P - V1 - O2P	84.59 (7)
O3-V1-O1	99.26 (9)	O3P-V1-O2P	82.17 (7)
O1P-V1-O1	89.59 (7)	O1-V1-O2P	78.71 (7)
O3P-V1-O1	160.61 (8)	O2-V1-O2P	81.07 (7)
O3-V1-O2	96.64 (9)	C1-O1-V1	112.73 (16)
O1P-V1-O2	164.10 (8)	C2-O2-V1	112.22 (17)
O3P-V1-O2	93.07 (7)		

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by Illinois State University, the American Chemical Society Petroleum Research Fund (46064-B3) and the National Science Foundation (US, CHE-0645081). The authors also thank the STaRBURSTT Cyber-diffraction Consortium and Dr M. Zeller (Youngstown State University) for the collection of the X-ray intensity data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2126).

References

- Bruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Costisor, O., Brezeanu, M., Journaux, Y., Mereiter, K., Weinberger, P. & Linert, W. (2001). *Eur. J. Inorg. Chem.* pp. 2061–2066.
- Kamenar, B., Hergold-Brundic, A. & Bruvo, M. (1988). Z. Kristallogr. 184, 103-110.
- Kläui, W. (1979). Z. Naturforsch. Teil B, 34, 1403-1407.
- Kläui, W., Müller, A., Eberspach, W., Boese, R. & Goldberg, I. (1987). J. Am. Chem. Soc. 109, 164–169.
- Kölle, U. & Englert, U. (2002). Eur. J. Inorg. Chem. pp. 165-170.
- Li, G., Shi, Z., Xu, Y. & Feng, S. (2003). Inorg. Chem. 42, 1170-1174.

Min, K. S., Rhinegold, A. L. & Miller, J. S. (2005). Inorg. Chem. 44, 8433–8441.

- Salta, J., O'Connor, C. J., Li, S. & Zubieta, J. (1996). Inorg. Chim. Acta, 250, 303–310.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tatiersky, J., Schwendt, P., Sivák, M. & Marek, J. (2005). Dalton Trans. pp. 2305-2311.
- Triki, S., Bérézovsky, F., Pala, J. S. & Garland, M. T. (2000). *Inorg. Chim. Acta*, **308**, 31–36.
- Ward, T. R., Duclos, S., Therrien, B. & Schenk, K. (1998). Organometallics, 17, 2490–2494.
- Weberski, M. P. Jr & McLauchlan, C. C. (2007a). Inorg. Chem. Commun. 10, 906–909.
- Weberski, M. P. & McLauchlan, C. C. (2007b). Acta Cryst. E63, m1171–m1172.Yang, S., Li, G., Tian, S., Liao, F. & Lin, J. (2006). Eur. J. Inorg. Chem. 2850– 2854.

Acta Cryst. (2008). E64, m1129-m1130 [doi:10.1107/S1600536808024458]

Bis{[(η^5)-cyclopentadienyl]tris(diethyl $\kappa^3 O, O', O''$]oxovanadium(IV)}- μ -oxalate

phosphito- $\kappa^3 P, P', P''$)cobaltate(III)-

C. C. McLauchlan and A. E. Anderson

Comment

The title compound, $\{[Cp(P^{OEt})_3Co]VO\}_2(\mu-C_2O_4), (I), (Cp = cyclopentadienyl anion, C_5H_5^-, P^{OEt} = diethylphosphite anion, C_4H_{10}O_3P^-)$ was synthesized by oxidation of the known $\{[Cp(P^{OEt})_3Co]VCl\}_2(\mu-C_2O_4)$ dimer (Weberski & McLauchlan, 2007*a*).

Dozens of both terminal (*e.g.*, Tatiersky *et al.*, 2005; Costisor *et al.*, 2006) and bridging (*e.g.*, Salta *et al.*, 1996; Triki *et al.*, 2000; Li *et al.*, 2003; Min *et al.*, 2005; Yang *et al.*, 2006) oxalato complexes have been reported for vanadium. The distances and angles in (I) (Table 1) are comparable to those in these known reported structures for oxalate bridging complexes. Similarly, the distances and angles in (I) are comparable to the previously reported structures involving the ligand (Kläui, 1979; Kläui *et al.*, 1987; Kamenar *et al.*, 1988; Ward *et al.*, 1998; Kölle & Englert, 2002; Weberski & McLauchlan, 2007*b*)

The geometric center of the dimer lies on the inversion center (Fig. 1).

Some minor disorder, as may be expected, is present in the ethyl groups and the Cp ring, which results in some slightly elongated ellipsoids, but the disorder was not modeled.

Experimental

Compound (I) was synthesized by serendipitous air oxidation of the known { $[Cp(P^{OEt})_{3}Co]VCl$ }₂(μ -C₂O₄) dimer (Weberski & McLauchlan, 2007*a*) in diethyl ether (Cp = cyclopentadienyl anion, C₅H₅⁻, P^{OEt} = diethylphosphite anion, C₄H₁₀O₃P⁻). An amount of 44 mg of green, X-ray diffraction quality crystals of (I) were grown from the unoptimized slow evaporation of an ether solution at *ca* 300 K. The crystals shatter at 100 K. Anal. Calcd. for C₃₆H₇₀Co₂O₂₄P₆V₂: C, 33.45; H, 5.46. Found: C, 33.85; H, 5.65. The compound decomposes above 473 K. Infrared (cm⁻¹): 441, 478, 590, 728, 771, 835, 930, 977, 1031, 1129, 1262, 1353, 1388, 1426, 1444, 1477, 1625, 2345, 2367, 2930, 2979, 3423. Magnetic susceptibility (Evans method, uncorrected), χ_m (χ_m T) 1.65 *x* 10⁻³ erg*G⁻²mol⁻¹ (0.492). Electronic absorbance (UV/vis, CH₃CN, λ , nm(ϵ , M^{-1} cm⁻¹)): 242 (42000), 333 (5700), 485 (124), 656 (116).

Refinement

The H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with $U_{iso}(H) = 1.2U_{iso}(C)$ or $1.5U_{eq}(\text{methyl C})$.

Figures

Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: (i) -x, y, -z + 1/2.

 $Bis[1,4(\eta^5)-cyclopentadienyl] hexakis(\mu-diethyl phosphito)-1:2\kappa^6P:O;3:4\kappa^6O:P-\mu-oxalato-2:3\kappa^4O^1,O^2:O^1',O^2-dioxido-2\kappa O,3\kappa O-1,4-dicobalt(III)-2,3-divanadium(IV)$

Crystal data

$[Co_2V_2(C_5H_5)_2(C_2O_4)(C_4H_{10}O_3P)_6O_2]$	F(000) = 2672
$M_r = 1292.48$	$D_{\rm x} = 1.554 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Melting point: dec. 473(1) K
Hall symbol: -C 2yc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 28.364 (5) Å	Cell parameters from 9976 reflections
b = 10.9825 (18) Å	$\theta = 5.0-63.5^{\circ}$
c = 19.976 (3) Å	$\mu = 1.17 \text{ mm}^{-1}$
$\beta = 117.412 \ (2)^{\circ}$	T = 180 K
$V = 5524.0 (16) \text{ Å}^3$	Plate, green
Z = 4	$0.63 \times 0.33 \times 0.06 \text{ mm}$

Data collection

6845 independent reflections
5617 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.037$
$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
$h = -37 \rightarrow 37$
$k = -14 \rightarrow 14$
$l = -26 \rightarrow 26$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.109$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0479P)^2 + 16.0571P]$ where $P = (F_o^2 + 2F_c^2)/3$
6845 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$

323 parameters	$\Delta \rho_{max} = 0.70 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
V1	0.028671 (16)	0.78146 (4)	0.13941 (2)	0.02455 (10)
Col	0.176050 (13)	0.74072 (3)	0.16646 (2)	0.02774 (10)
P1	0.11499 (3)	0.60266 (6)	0.12884 (4)	0.02764 (14)
P2	0.15939 (3)	0.78092 (6)	0.26021 (4)	0.02754 (14)
P3	0.11777 (3)	0.87517 (6)	0.09797 (4)	0.02816 (15)
01	0.00650 (7)	0.66231 (15)	0.19874 (10)	0.0286 (4)
O2	0.01090 (7)	0.90562 (15)	0.20266 (10)	0.0275 (4)
C1	0.0000	0.7134 (3)	0.2500	0.0245 (7)
C2	0.0000	0.8544 (3)	0.2500	0.0248 (7)
O3	-0.02642 (8)	0.79215 (18)	0.06448 (11)	0.0379 (4)
O1P	0.05862 (7)	0.64296 (16)	0.10672 (11)	0.0309 (4)
01A	0.13253 (8)	0.50150 (17)	0.19333 (11)	0.0375 (4)
O2A	0.11265 (8)	0.5267 (2)	0.05926 (12)	0.0428 (5)
C1A	0.09433 (16)	0.4095 (3)	0.1891 (2)	0.0563 (9)
H1AA	0.0580	0.4430	0.1613	0.068*
H1AB	0.0970	0.3382	0.1606	0.068*
C2A	0.1032 (2)	0.3716 (6)	0.2616 (3)	0.105 (2)
H2AA	0.0772	0.3089	0.2567	0.157*
H2AB	0.0994	0.4415	0.2893	0.157*
H2AC	0.1392	0.3383	0.2892	0.157*
C3A	0.06647 (12)	0.5172 (3)	-0.01328 (17)	0.0377 (6)
H3AA	0.0420	0.5859	-0.0204	0.045*
H3AB	0.0474	0.4402	-0.0163	0.045*
C4A	0.08407 (16)	0.5198 (4)	-0.0731 (2)	0.0567 (9)
H4AA	0.0530	0.5145	-0.1228	0.085*
H4AB	0.1077	0.4506	-0.0663	0.085*
H4AC	0.1031	0.5960	-0.0695	0.085*
O2P	0.10274 (7)	0.76760 (15)	0.24648 (10)	0.0273 (4)
O1B	0.18059 (8)	0.91352 (19)	0.29463 (14)	0.0444 (5)
O2B	0.19748 (8)	0.6950 (2)	0.32940 (11)	0.0397 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C1B	0.14588 (12)	1.0097 (3)	0.29536 (18)	0.0403 (6)
H1BA	0.1091	0.9928	0.2566	0.048*
H1BB	0.1570	1.0881	0.2826	0.048*
C2B	0.1473 (2)	1.0196 (5)	0.3698 (3)	0.0848 (15)
H2BA	0.1262	1.0900	0.3702	0.127*
H2BB	0.1841	1.0301	0.4087	0.127*
H2BC	0.1325	0.9454	0.3800	0.127*
C3B	0.18998 (16)	0.6875 (4)	0.3955 (2)	0.0542 (9)
H3BA	0.1516	0.6810	0.3806	0.065*
H3BB	0.2038	0.7621	0.4261	0.065*
C4B	0.21855 (14)	0.5785 (3)	0.4410 (2)	0.0535 (8)
H4BA	0.2162	0.5779	0.4884	0.080*
H4BB	0.2559	0.5818	0.4519	0.080*
H4BC	0.2022	0.5043	0.4124	0.080*
O3P	0.07192 (7)	0.90314 (15)	0.11549 (10)	0.0287 (4)
01C	0.09368 (8)	0.83591 (19)	0.01116 (11)	0.0396 (5)
O2C	0.14763 (8)	1.00128 (18)	0.10399 (14)	0.0469 (6)
C1C	0.04967 (13)	0.9052 (3)	-0.04630 (17)	0.0448 (7)
H1CA	0.0637	0.9746	-0.0633	0.054*
H1CB	0.0270	0.9378	-0.0248	0.054*
C2C	0.01791 (18)	0.8257 (3)	-0.1108 (2)	0.0791 (15)
H2CA	-0.0109	0.8730	-0.1500	0.119*
H2CB	0.0028	0.7590	-0.0942	0.119*
H2CC	0.0406	0.7921	-0.1312	0.119*
C3C	0.12391 (11)	1.1198 (2)	0.09617 (17)	0.0337 (6)
НЗСА	0.1295	1.1500	0.1460	0.040*
НЗСВ	0.0852	1.1152	0.0624	0.040*
C4C	0.14959 (12)	1.2044 (3)	0.0636 (2)	0.0435 (7)
H4CA	0.1356	1.2869	0.0607	0.065*
H4CB	0.1419	1.1767	0.0129	0.065*
H4CC	0.1881	1.2048	0.0959	0.065*
C32	0.24880 (11)	0.6532 (3)	0.22456 (19)	0.0429 (7)
H32	0.2576	0.5990	0.2656	0.051*
C33	0.25670 (12)	0.7796 (3)	0.2303 (2)	0.0523 (9)
H33	0.2718	0.8255	0.2757	0.063*
C34	0.23856 (15)	0.8257 (4)	0.1582 (3)	0.0677 (13)
H34	0.2394	0.9088	0.1455	0.081*
C35	0.21853 (15)	0.7274 (5)	0.1062 (2)	0.0696 (13)
H35	0.2030	0.7329	0.0529	0.084*
C36	0.22599 (12)	0.6204 (3)	0.1488 (2)	0.0512 (8)
H36	0.2170	0.5401	0.1293	0.061*
	. 2			
Atomic displacement	nt parameters (A^2)			

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
V1	0.0245 (2)	0.02041 (19)	0.0309 (2)	0.00117 (15)	0.01458 (17)	-0.00023 (15)
Col	0.02674 (18)	0.02207 (16)	0.0390 (2)	0.00463 (12)	0.01910 (15)	0.00510 (13)
P1	0.0314 (3)	0.0205 (3)	0.0336 (3)	0.0033 (2)	0.0171 (3)	-0.0002 (2)

P2	0.0246 (3)	0.0253 (3)	0.0329 (3)	-0.0018 (2)	0.0135 (3)	-0.0004 (2)
Р3	0.0298 (3)	0.0221 (3)	0.0388 (4)	0.0052 (2)	0.0212 (3)	0.0071 (3)
01	0.0325 (9)	0.0175 (8)	0.0429 (10)	-0.0020 (6)	0.0236 (8)	-0.0026 (7)
O2	0.0315 (9)	0.0180 (7)	0.0401 (10)	0.0001 (6)	0.0225 (8)	0.0006 (7)
C1	0.0187 (14)	0.0185 (14)	0.0369 (18)	0.000	0.0133 (13)	0.000
C2	0.0228 (15)	0.0172 (14)	0.0347 (18)	0.000	0.0135 (14)	0.000
O3	0.0314 (10)	0.0348 (10)	0.0419 (11)	0.0034 (8)	0.0120 (9)	0.0001 (8)
O1P	0.0326 (9)	0.0253 (8)	0.0389 (10)	-0.0003 (7)	0.0198 (8)	-0.0065 (7)
O1A	0.0433 (11)	0.0241 (9)	0.0435 (11)	-0.0020 (8)	0.0185 (9)	0.0064 (8)
O2A	0.0421 (11)	0.0443 (12)	0.0396 (11)	0.0125 (9)	0.0168 (9)	-0.0094 (9)
C1A	0.072 (2)	0.0375 (17)	0.058 (2)	-0.0188 (16)	0.0285 (19)	0.0034 (15)
C2A	0.118 (4)	0.133 (5)	0.067 (3)	-0.067 (4)	0.046 (3)	0.004 (3)
C3A	0.0390 (15)	0.0340 (14)	0.0414 (15)	-0.0036 (11)	0.0196 (12)	-0.0083 (12)
C4A	0.063 (2)	0.068 (2)	0.0461 (19)	-0.0039 (18)	0.0307 (17)	-0.0128 (17)
O2P	0.0272 (9)	0.0254 (8)	0.0306 (9)	-0.0009 (7)	0.0144 (7)	0.0002 (7)
O1B	0.0359 (11)	0.0347 (10)	0.0677 (14)	-0.0093 (8)	0.0282 (10)	-0.0180 (10)
O2B	0.0324 (10)	0.0495 (12)	0.0351 (10)	0.0043 (9)	0.0138 (8)	0.0074 (9)
C1B	0.0377 (15)	0.0304 (13)	0.0549 (18)	-0.0032 (11)	0.0232 (14)	-0.0044 (12)
C2B	0.113 (4)	0.084 (3)	0.079 (3)	0.037 (3)	0.063 (3)	0.007 (3)
C3B	0.066 (2)	0.054 (2)	0.0445 (18)	0.0085 (17)	0.0268 (17)	0.0085 (16)
C4B	0.0481 (19)	0.061 (2)	0.0481 (19)	0.0047 (16)	0.0192 (15)	0.0151 (16)
O3P	0.0307 (9)	0.0229 (8)	0.0380 (10)	0.0055 (7)	0.0205 (8)	0.0054 (7)
O1C	0.0442 (11)	0.0435 (11)	0.0368 (11)	0.0169 (9)	0.0234 (9)	0.0103 (9)
O2C	0.0412 (11)	0.0224 (9)	0.0897 (18)	0.0063 (8)	0.0407 (12)	0.0144 (10)
C1C	0.0518 (18)	0.0427 (16)	0.0379 (16)	0.0138 (14)	0.0190 (14)	0.0120 (13)
C2C	0.076 (3)	0.0360 (18)	0.077 (3)	-0.0013 (18)	-0.006 (2)	0.0073 (18)
C3C	0.0346 (13)	0.0231 (12)	0.0444 (15)	0.0049 (10)	0.0191 (12)	0.0044 (11)
C4C	0.0403 (16)	0.0289 (13)	0.0593 (19)	0.0005 (12)	0.0212 (14)	0.0141 (13)
C32	0.0280 (13)	0.0427 (16)	0.0587 (19)	0.0143 (12)	0.0206 (13)	0.0114 (14)
C33	0.0287 (14)	0.0448 (17)	0.085 (3)	-0.0015 (13)	0.0273 (16)	-0.0089 (17)
C34	0.047 (2)	0.050 (2)	0.132 (4)	0.0157 (16)	0.063 (2)	0.034 (2)
C35	0.046 (2)	0.122 (4)	0.057 (2)	0.035 (2)	0.0371 (18)	0.028 (2)
C36	0.0349 (16)	0.0471 (18)	0.076 (2)	0.0107 (13)	0.0294 (16)	-0.0104 (17)

Geometric parameters (Å, °)

V1—O3	1.594 (2)	C4A—H4AB	0.9800
V1—O1P	1.9932 (18)	C4A—H4AC	0.9800
V1—O3P	2.0145 (18)	O1B—C1B	1.449 (3)
V1—O1	2.0490 (18)	O2B—C3B	1.433 (4)
V1—O2	2.0727 (17)	C1B—C2B	1.473 (5)
V1—O2P	2.2077 (18)	C1B—H1BA	0.9900
Co1—C35	2.063 (3)	C1B—H1BB	0.9900
Co1—C34	2.077 (3)	C2B—H2BA	0.9800
Co1—C32	2.079 (3)	C2B—H2BB	0.9800
Co1—C36	2.082 (3)	C2B—H2BC	0.9800
Co1—C33	2.087 (3)	C3B—C4B	1.496 (5)
Co1—P1	2.1597 (8)	СЗВ—НЗВА	0.9900
Co1—P3	2.1684 (7)	C3B—H3BB	0.9900

Co1—P2	2.1774 (8)	C4B—H4BA	0.9800
P1—O1P	1.5156 (19)	C4B—H4BB	0.9800
P1—O2A	1.596 (2)	C4B—H4BC	0.9800
P1—O1A	1.597 (2)	01C—C1C	1.461 (3)
P2—O2P	1.5075 (18)	O2C—C3C	1.441 (3)
P2—O1B	1.604 (2)	C1C—C2C	1.471 (5)
P2—O2B	1.610 (2)	C1C—H1CA	0.9900
P3—O3P	1.5257 (18)	C1C—H1CB	0.9900
P3—O2C	1.599 (2)	C2C—H2CA	0.9800
P3—O1C	1.603 (2)	C2C—H2CB	0.9800
O1—C1	1.253 (2)	C2C—H2CC	0.9800
O2—C2	1.255 (2)	C3C—C4C	1.501 (4)
C1—O1 ⁱ	1.254 (2)	СЗС—НЗСА	0.9900
C1—C2	1.549 (4)	СЗС—НЗСВ	0.9900
C2—O2 ⁱ	1.255 (2)	C4C—H4CA	0.9800
O1A—C1A	1.455 (4)	C4C—H4CB	0.9800
O2A—C3A	1.442 (3)	C4C—H4CC	0.9800
C1A—C2A	1.415 (5)	C32—C36	1.391 (5)
C1A—H1AA	0.9900	C32—C33	1.402 (5)
C1A—H1AB	0.9900	С32—Н32	0.9500
С2А—Н2АА	0.9800	C33—C34	1.383 (6)
C2A—H2AB	0.9800	С33—Н33	0.9500
C2A—H2AC	0.9800	C34—C35	1.422 (7)
C3A—C4A	1.492 (4)	C34—H34	0.9500
СЗА—НЗАА	0.9900	C35—C36	1.409 (6)
СЗА—НЗАВ	0.9900	С35—Н35	0.9500
С4А—Н4АА	0.9800	С36—Н36	0.9500
O3—V1—O1P	97.46 (9)	СЗА—С4А—Н4АА	109.5
O3—V1—O3P	99.73 (9)	СЗА—С4А—Н4АВ	109.5
O1P—V1—O3P	91.75 (7)	Н4АА—С4А—Н4АВ	109.5
O3—V1—O1	99.26 (9)	СЗА—С4А—Н4АС	109.5
01P—V1—01	89.59 (7)	Н4АА—С4А—Н4АС	109.5
O3P—V1—O1	160.61 (8)	Н4АВ—С4А—Н4АС	109.5
O3—V1—O2	96.64 (9)	P2—O2P—V1	128.96 (11)
O1P—V1—O2	164.10 (8)	C1B—O1B—P2	122.94 (18)
O3P—V1—O2	93.07 (7)	C3B—O2B—P2	119.9 (2)
O1—V1—O2	80.91 (7)	O1B—C1B—C2B	111.2 (3)
O3—V1—O2P	177.13 (9)	O1B—C1B—H1BA	109.4
O1P—V1—O2P	84.59 (7)	C2B—C1B—H1BA	109.4
O3P—V1—O2P	82.17 (7)	O1B—C1B—H1BB	109.4
O1—V1—O2P	78.71 (7)	C2B—C1B—H1BB	109.4
O2—V1—O2P	81.07 (7)	H1BA—C1B—H1BB	108.0
C35—Co1—C34	40.17 (18)	C1B—C2B—H2BA	109.5
C35—Co1—C32	66.22 (14)	C1B—C2B—H2BB	109.5
C34—Co1—C32	65.66 (14)	H2BA—C2B—H2BB	109.5
C35—Co1—C36	39.74 (16)	C1B—C2B—H2BC	109.5
C34—Co1—C36	66.39 (15)	H2BA—C2B—H2BC	109.5
C32—Co1—C36	39.06 (14)	H2BB—C2B—H2BC	109.5

C35—Co1—C33	66.45 (17)	O2B—C3B—C4B	109.7 (3)
C34—Co1—C33	38.81 (17)	О2В—С3В—НЗВА	109.7
C32—Co1—C33	39.33 (13)	С4В—С3В—Н3ВА	109.7
C36—Co1—C33	66.01 (14)	O2B—C3B—H3BB	109.7
C35—Co1—P1	109.73 (16)	С4В—С3В—Н3ВВ	109.7
C34—Co1—P1	149.89 (15)	НЗВА—СЗВ—НЗВВ	108.2
C32—Co1—P1	107.49 (9)	C3B—C4B—H4BA	109.5
C36—Co1—P1	89.69 (10)	C3B—C4B—H4BB	109.5
C33—Co1—P1	146.52 (10)	H4BA—C4B—H4BB	109.5
C35—Co1—P3	99.24 (11)	C3B—C4B—H4BC	109.5
C34—Co1—P3	94.27 (10)	H4BA—C4B—H4BC	109.5
C32—Co1—P3	159.92 (9)	H4BB—C4B—H4BC	109.5
C36—Co1—P3	134.90 (11)	P3—O3P—V1	126.68 (10)
C33—Co1—P3	123.29 (10)	C1C—O1C—P3	119.63 (19)
P1—Co1—P3	90.13 (3)	C3C—O2C—P3	124.74 (17)
C35—Co1—P2	158.80 (14)	01C—C1C—C2C	109.7 (3)
C34—Co1—P2	120.59 (15)	O1C—C1C—H1CA	109.7
C32—Co1—P2	99.57 (10)	C2C—C1C—H1CA	109.7
C36—Co1—P2	135.08 (11)	O1C—C1C—H1CB	109.7
C33—Co1—P2	92.52 (11)	C2C—C1C—H1CB	109.7
P1—Co1—P2	89.13 (3)	H1CA—C1C—H1CB	108.2
P3—Co1—P2	90.02 (3)	C1C—C2C—H2CA	109.5
O1P—P1—O2A	106.46 (11)	C1C—C2C—H2CB	109.5
O1P—P1—O1A	109.47 (11)	H2CA—C2C—H2CB	109.5
O2A—P1—O1A	102.22 (12)	C1C—C2C—H2CC	109.5
O1P—P1—Co1	117.76 (8)	H2CA—C2C—H2CC	109.5
O2A—P1—Co1	112.03 (9)	H2CB—C2C—H2CC	109.5
O1A—P1—Co1	107.79 (8)	O2C—C3C—C4C	108.1 (2)
O2P—P2—O1B	108.90 (10)	O2C—C3C—H3CA	110.1
O2P—P2—O2B	109.71 (11)	С4С—С3С—Н3СА	110.1
O1B—P2—O2B	101.13 (12)	О2С—С3С—Н3СВ	110.1
O2P—P2—Co1	117.32 (8)	С4С—С3С—Н3СВ	110.1
O1B—P2—Co1	111.45 (9)	НЗСА—СЗС—НЗСВ	108.4
O2B—P2—Co1	107.08 (8)	СЗС—С4С—Н4СА	109.5
O3P—P3—O2C	106.64 (10)	СЗС—С4С—Н4СВ	109.5
O3P—P3—O1C	108.57 (11)	Н4СА—С4С—Н4СВ	109.5
O2C—P3—O1C	105.17 (13)	C3C—C4C—H4CC	109.5
O3P—P3—Co1	118.37 (7)	H4CA—C4C—H4CC	109.5
O2C—P3—Co1	108.60 (8)	Н4СВ—С4С—Н4СС	109.5
O1C—P3—Co1	108.72 (8)	C36—C32—C33	108.8 (3)
C1—O1—V1	112.73 (16)	C36—C32—Co1	70.59 (17)
C2—O2—V1	112.22 (17)	C33—C32—Co1	70.64 (17)
01—C1—O1 ⁱ	126.8 (3)	С36—С32—Н32	125.6
O1—C1—C2	116.59 (15)	С33—С32—Н32	125.6
O1 ⁱ —C1—C2	116.59 (15)	Co1—C32—H32	124.8
02—C2—O2 ⁱ	126.8 (3)	C34—C33—C32	108.0 (4)
O2—C2—C1	116.60 (15)	C34—C33—Co1	70.2 (2)
O2 ⁱ —C2—C1	116.60 (15)	C32—C33—Co1	70.03 (17)

P1—O1P—V1	132.76 (11)	С34—С33—Н33	126.0
C1A—O1A—P1	119.3 (2)	С32—С33—Н33	126.0
C3A—O2A—P1	124.59 (18)	Со1—С33—Н33	125.3
C2A—C1A—O1A	111.6 (3)	C33—C34—C35	108.3 (3)
C2A—C1A—H1AA	109.3	C33—C34—Co1	70.99 (19)
O1A—C1A—H1AA	109.3	C35—C34—Co1	69.4 (2)
C2A—C1A—H1AB	109.3	С33—С34—Н34	125.8
O1A—C1A—H1AB	109.3	С35—С34—Н34	125.8
H1AA—C1A—H1AB	108.0	Co1—C34—H34	125.4
C1A—C2A—H2AA	109.5	C36—C35—C34	107.1 (3)
C1A—C2A—H2AB	109.5	C36—C35—Co1	70.88 (19)
Н2АА—С2А—Н2АВ	109.5	C34—C35—Co1	70.5 (2)
C1A—C2A—H2AC	109.5	С36—С35—Н35	126.4
H2AA—C2A—H2AC	109.5	С34—С35—Н35	126.4
H2AB—C2A—H2AC	109.5	Co1—C35—H35	123.9
O2A—C3A—C4A	108.6 (3)	C32—C36—C35	107.8 (3)
О2А—С3А—НЗАА	110.0	C32—C36—Co1	70.35 (17)
С4А—С3А—НЗАА	110.0	C35—C36—Co1	69.38 (19)
О2А—С3А—НЗАВ	110.0	С32—С36—Н36	126.1
С4А—С3А—НЗАВ	110.0	С35—С36—Н36	126.1
НЗАА—СЗА—НЗАВ	108.3	Co1—C36—H36	125.7
C35—Co1—P1—O1P	-128.14 (15)	O3P—V1—O2P—P2	-32.47 (13)
C34—Co1—P1—O1P	-127.0 (2)	O1—V1—O2P—P2	150.71 (14)
C32—Co1—P1—O1P	161.50 (13)	O2—V1—O2P—P2	-126.85 (14)
C36—Co1—P1—O1P	-163.17 (14)	O2P—P2—O1B—C1B	-12.3 (3)
C33—Co1—P1—O1P	155.0 (2)	O2B—P2—O1B—C1B	-127.8 (2)
P3—Co1—P1—O1P	-28.28 (9)	Co1—P2—O1B—C1B	118.7 (2)
P2—Co1—P1—O1P	61.74 (9)	O2P—P2—O2B—C3B	-42.2 (3)
C35—Co1—P1—O2A	-4.20 (15)	O1B—P2—O2B—C3B	72.7 (3)
C34—Co1—P1—O2A	-3.1 (2)	Co1—P2—O2B—C3B	-170.6 (2)
C32—Co1—P1—O2A	-74.56 (13)	P2—O1B—C1B—C2B	99.8 (4)
C36—Co1—P1—O2A	-39.23 (14)	P2—O2B—C3B—C4B	163.9 (2)
C33—Co1—P1—O2A	-81.1 (2)	O2C—P3—O3P—V1	-165.84 (14)
P3—Co1—P1—O2A	95.66 (9)	O1C—P3—O3P—V1	81.30 (15)
P2—Co1—P1—O2A	-174.32 (9)	Co1—P3—O3P—V1	-43.18 (16)
C35—Co1—P1—O1A	107.49 (14)	O3—V1—O3P—P3	-109.89 (15)
C34—Co1—P1—O1A	108.6 (2)	O1P—V1—O3P—P3	-12.01 (14)
C32—Co1—P1—O1A	37.13 (13)	O1—V1—O3P—P3	81.7 (3)
C36—Co1—P1—O1A	72.46 (14)	O2—V1—O3P—P3	152.83 (14)
C33—Co1—P1—O1A	30.6 (2)	O2P—V1—O3P—P3	72.28 (14)
P3—Co1—P1—O1A	-152.64 (9)	O3P—P3—O1C—C1C	44.0 (2)
P2—Co1—P1—O1A	-62.63 (9)	O2C—P3—O1C—C1C	-69.8 (2)
C35—Co1—P2—O2P	173.1 (4)	Co1—P3—O1C—C1C	174.1 (2)
C34—Co1—P2—O2P	151.66 (14)	O3P—P3—O2C—C3C	-22.9 (3)
C32—Co1—P2—O2P	-141.04 (12)	O1C—P3—O2C—C3C	92.3 (3)
C36—Co1—P2—O2P	-122.13 (16)	Co1—P3—O2C—C3C	-151.5 (2)
C33—Co1—P2—O2P	-179.98 (13)	P3—O1C—C1C—C2C	-152.3 (3)
P1—Co1—P2—O2P	-33.44 (8)	P3—O2C—C3C—C4C	-149.4 (2)
P3—Co1—P2—O2P	56.69 (8)	C35—Co1—C32—C36	-37.8 (2)

C35—Co1—P2—O1B	46.6 (4)	C34—Co1—C32—C36	-81.9 (3)
C34—Co1—P2—O1B	25.17 (15)	C33—Co1—C32—C36	-119.1 (3)
C32—Co1—P2—O1B	92.47 (13)	P1-Co1-C32-C36	66.6 (2)
C36—Co1—P2—O1B	111.37 (17)	P3—Co1—C32—C36	-83.8 (3)
C33—Co1—P2—O1B	53.52 (14)	P2-Co1-C32-C36	158.71 (19)
P1—Co1—P2—O1B	-159.94 (9)	C35—Co1—C32—C33	81.3 (3)
P3—Co1—P2—O1B	-69.81 (9)	C34—Co1—C32—C33	37.1 (2)
C35—Co1—P2—O2B	-63.1 (4)	C36—Co1—C32—C33	119.1 (3)
C34—Co1—P2—O2B	-84.57 (15)	P1—Co1—C32—C33	-174.3 (2)
C32—Co1—P2—O2B	-17.27 (13)	P3—Co1—C32—C33	35.3 (4)
C36—Co1—P2—O2B	1.64 (17)	P2-Co1-C32-C33	-82.2 (2)
C33—Co1—P2—O2B	-56.21 (13)	C36—C32—C33—C34	0.3 (3)
P1—Co1—P2—O2B	90.33 (9)	Co1—C32—C33—C34	-60.2 (2)
P3—Co1—P2—O2B	-179.54 (9)	C36—C32—C33—Co1	60.5 (2)
C35—Co1—P3—O3P	172.13 (18)	C35—Co1—C33—C34	38.0 (2)
C34—Co1—P3—O3P	-147.70 (17)	C32—Co1—C33—C34	118.7 (3)
C32—Co1—P3—O3P	-146.0 (3)	C36—Co1—C33—C34	81.6 (3)
C36—Co1—P3—O3P	151.80 (16)	P1-Co1-C33-C34	128.5 (2)
C33—Co1—P3—O3P	-120.05 (16)	P3—Co1—C33—C34	-47.6 (3)
P1—Co1—P3—O3P	62.11 (9)	P2-Co1-C33-C34	-139.3 (2)
P2—Co1—P3—O3P	-27.02(9)	C_{35} — C_{01} — C_{33} — C_{32}	-80.7(2)
C_{35} — C_{01} — P_{3} — O_{2C}	-66.20 (18)	C_{34} — C_{01} — C_{33} — C_{32}	-118.7 (3)
C_{34} — C_{01} — P_{3} — $O_{2}C$	-26.03(18)	$C_{36} - C_{01} - C_{33} - C_{32}$	-371(2)
C_{32} — C_{01} — P_{3} — $O_{2}C$	-24.4(3)	P1—Co1—C33—C32	9.8 (3)
$C_{36} - C_{01} - P_{3} - O_{2C}$	-86.53 (17)	P3—Co1—C33—C32	-166.27 (17)
C_{33} — C_{01} — P_{3} — $O_{2}C$	1.62 (17)	P2-Co1-C33-C32	102.1 (2)
P1-Co1-P3-O2C	-17622(10)	C_{32} C_{33} C_{34} C_{35}	0.5 (4)
$P_2 = C_0 = P_3 = O_2 C_1$	94 65 (10)	C_{01} = C_{33} = C_{34} = C_{35}	-59.6(2)
$C_{35} - C_{01} - P_{3} - O_{1}C$	47 72 (18)	C_{32} C_{33} C_{34} C_{01}	60 1 (2)
C_{34} C_{01} P_{3} O_{1C}	87 88 (17)	C_{35} C_{01} C_{34} C_{33}	-1190(3)
C_{32} — C_{01} — P_{3} — O_{1C}	896(3)	C_{32} — C_{01} — C_{34} — C_{33}	-37.6(2)
$C_{36} - C_{01} - P_{3} - O_{1}C$	27 39 (17)	$C_{36} - C_{01} - C_{34} - C_{33}$	-80.5(2)
$C_{33} = C_{01} = P_{3} = O_{1}C_{1}$	115 54 (16)	P1-Co1-C34-C33	-1206(3)
P1-Co1-P3-O1C	-62.30(9)	$P_3 = C_0 1 = C_3 4 = C_3 3$	120.0(3) 141.8(2)
$P_2 = C_0 = P_3 = 01C$	-15143(9)	P_{2} Co1 C34 C33	49 2 (2)
03 - V1 - 01 - C1	-10415(14)	C_{32} C_{01} C_{34} C_{35}	81 4 (2)
O1P-V1-O1-C1	158 36 (13)	$C_{36} - C_{01} - C_{34} - C_{35}$	38.4 (2)
$O_{3P}V_{1}O_{1}C_{1}$	64 2 (3)	$C_{33} - C_{01} - C_{34} - C_{35}$	1190(3)
02 - V1 - 01 - C1	-8.84(12)	P1-Co1-C34-C35	-1.6(4)
02P-V1-01-C1	73 79 (12)	P3-Co1-C34-C35	-99 3 (2)
03 - V1 - 02 - C2	103.96 (13)	P_{2} Col C_{34} C C_{35}	168 18 (19)
01P - V1 - 02 - C2	-484(3)	$C_{33} = C_{34} = C_{35} = C_{36}$	-12(4)
$O_{3P} V_{1} O_{2} C_{2}$	-155.87(12)	C_{01} $-C_{34}$ $-C_{35}$ $-C_{36}$	-61.8(2)
01 - V1 - 02 - C2	5 59 (11)	$C_{33} - C_{34} - C_{35} - C_{01}$	60 6 (2)
O2P-V1-O2-C2	-74.30 (12)	C_{34} — C_{01} — C_{35} — C_{36}	117.0 (3)
$V_1 = 0$	-169 74 (13)	C_{32} — C_{01} — C_{35} — C_{36}	37 1 (2)
$V_1 = O_1 = O_1$	10.26 (13)	$C_{22}^{23} = C_{21}^{21} = C_{25}^{25} = C_{25}^{26}$	80.2(2)
	10.20(13)	$C_{33} - C_{01} - C_{33} - C_{30}$	(2, 0, (2))
$V1 - O2 - C2 - O2^{1}$	1//.9/(13)	PI-C01-C35-C36	-63.9 (2)

V1—O2—C2—C1	-2.03 (13)	P3-Co1-C35-C36	-157.4 (2)
O1—C1—C2—O2	-5.76 (13)	P2-Co1-C35-C36	87.8 (5)
01 ⁱ —C1—C2—O2	174.24 (13)	C32—Co1—C35—C34	-79.8 (2)
O1—C1—C2—O2 ⁱ	174.24 (13)	C36—Co1—C35—C34	-117.0 (3)
01^{i} — $C1$ — $C2$ — 02^{i}	-5.76 (13)	C33—Co1—C35—C34	-36.7 (2)
O2A—P1—O1P—V1	-155.10 (15)	P1-Co1-C35-C34	179.1 (2)
O1A—P1—O1P—V1	95.11 (16)	P3-Co1-C35-C34	85.7 (2)
Co1—P1—O1P—V1	-28.41 (18)	P2-Co1-C35-C34	-29.2 (5)
O3—V1—O1P—P1	153.83 (16)	C33—C32—C36—C35	-1.1 (3)
O3P—V1—O1P—P1	53.77 (16)	Co1—C32—C36—C35	59.5 (2)
O1-V1-O1P-P1	-106.88 (16)	C33—C32—C36—Co1	-60.6 (2)
O2-V1-O1P-P1	-53.9 (4)	C34—C35—C36—C32	1.4 (4)
O2P—V1—O1P—P1	-28.19 (16)	Co1—C35—C36—C32	-60.1 (2)
O1P—P1—O1A—C1A	39.5 (3)	C34—C35—C36—Co1	61.5 (2)
O2A—P1—O1A—C1A	-73.0 (3)	C35—Co1—C36—C32	118.8 (3)
Co1—P1—O1A—C1A	168.8 (2)	C34—Co1—C36—C32	79.9 (2)
O1P—P1—O2A—C3A	8.5 (3)	C33—Co1—C36—C32	37.3 (2)
O1A—P1—O2A—C3A	123.3 (2)	P1-Co1-C36-C32	-118.93 (19)
Co1—P1—O2A—C3A	-121.6 (2)	P3—Co1—C36—C32	151.20 (16)
P1—O1A—C1A—C2A	-148.7 (4)	P2-Co1-C36-C32	-30.5 (3)
P1—O2A—C3A—C4A	141.6 (3)	C34—Co1—C36—C35	-38.9 (3)
O1B—P2—O2P—V1	101.82 (15)	C32—Co1—C36—C35	-118.8 (3)
O2B—P2—O2P—V1	-148.35 (13)	C33—Co1—C36—C35	-81.4 (3)
Co1—P2—O2P—V1	-25.91 (15)	P1-Co1-C36-C35	122.3 (2)
O3—V1—O2P—P2	-164.0 (17)	P3—Co1—C36—C35	32.4 (3)
O1P—V1—O2P—P2	60.05 (13)	P2-Co1-C36-C35	-149.2 (2)
Symmetry codes: (i) $-x$, y , $-z+1/2$.			

Fig. 1